脑变曾经心动Zzz

第1322章 基因编码


现代的程序语言都是由英文字母编写,碱基序列更像汉字中的偏旁部首,腺嘌呤、鸟嘌呤、胞嘧啶、腺嘧啶、胸腺嘧啶五种不同碱基按一定规则反复排列,就形成了一个个功能不同的基因。

不同的基因不仅是遗传编码,还是包含细胞制造对应蛋白质的原始模具,按照这个模具就可以找到一个个不同功能的氨基酸,将氨基酸拼接成肽链,肽链拼接到一起就组成了功能不同,种类繁多的蛋白质,这些不同功能的蛋白质就是组成地球生物的最主要材料。

基因就是按照一定规则编码的碱基序列组合,基因的长度可以有很大的变化,最小的由几十个碱基对组成,最大的可以包含超过二百万碱基对。

人类基因的平均长度约为两万七千个碱基对,短的几百,长的过百万。

细菌的基因相对的都比较短,平均只有一千个碱基对,当然也会有少数很长的基因。

基因中的碱基序列通常分为两大部分,编码区和非编码区。

编码区的长度从几十个碱基对到几千个碱基对不等,主要作用就是定义组成蛋白质的氨基酸序列,就是蛋白质生产的模板。

非编码区包含的就是基因中编码区以外的部分,包括多种功能调控元件,如启动子、增强子、沉默子、终止子、内含子等等,这些元件在基因表达的调控中起着关键作用。

高级生物的基因序列很长,主要原因就是多细胞生物体组织结构复杂,非编码区需要编写复杂的功能组件,设定基因表达的各种条件,在需要的时刻启动编码中的蛋白质制造。

细菌只有一个细胞,组织结构简单,主要依靠强大的繁殖能力和庞大的群体适应性生存,因此基因非编码区都比较简单。

人类这样的高级动物漫长的进化历史中,很多过去有用的基因功能因为不适应当时的环境都沉默了,但是遗传物质中仍然传承着过去的那些碱基序列,两万五千多基因中,当前能识别出来的只有两万左右,三亿多碱基对中有大量都是无效的碱基。

曾凡的目标是改造出一种特殊的菌群,可以在血液中生存,进入心脏后自动驻留,靠群体功能检测心脏的缺陷或者畸形部位,进入心肌细胞内部,自动释放相应催化酶,催化缺陷部位的心肌细胞定向增殖发育,增生部位的细胞自动收缩或者启动凋亡程序,达到治疗的目的。

这种细菌自身的结构不需要太复杂,体积也不需要太大,但是遗传物质中要包含这些心肌细胞催化酶的基因,还要有能检测心脏缺陷的基因,这些基因都要有复杂的非编码功能区,曾凡想要实现的检测和治疗的目的要靠这些精确调控完成。